DET KGL. DANSKE VIDENSKABERNES SELSKAB

 MATEMATISK-FYSISKE MEDDELELSER, Bind XXIV, Nr. 11
ON A GENERALIZATION OF KRONECKER'S THEOREM

BY

HANS TORNEHAVE

KØBENHAVN
I KOMMISSION HOS EJNAR MUNKSGAARD 1948

Printed in Denmark
Bianco Lunos Bogtrykkeri

INTRODUCTION

The following well-known theorem by Kronecker
Theorem 1. If m real numbers $\lambda_{1}, \cdots, \lambda_{m}$ do not satisfy any relation

$$
r_{1} \lambda_{1}+\cdots+r_{m} \lambda_{m}=0,
$$

where r_{1}, \cdots, r_{m} are rational numbers and at least one r_{p} is $\neq 0$, then there exists to any given real numbers v_{1}, \cdots, v_{m} and any positive ε a number t satisfying

$$
\left|\lambda_{\nu} t-v_{\nu}\right| \leq_{\varepsilon}(\bmod 2 \pi), \nu=1, \cdots, m,
$$

is equivalent to the following
Theorem 2. If $h_{\nu}(t)=e^{i \lambda_{\nu} t} ; \nu=1, \cdots, m$ are pure oscillations, whose frequencies $\frac{\lambda_{\nu}}{2 \pi} ; \nu=1, \cdots, m$ do not satisfy any relation

$$
r_{1} \frac{\lambda_{1}}{2 \pi}+\cdots+r_{m} \frac{\lambda_{m}}{2 \pi}=0
$$

where r_{1}, \cdots, r_{m} are rational numbers and at least one r_{p} is $\neq 0$, then there exists to any given real numbers v_{1}, \cdots, v_{m} and any positive ε a number t satisfying

$$
\begin{equation*}
\left|h_{\nu}(t)-e^{i \nu_{\nu}}\right| \leq_{\varepsilon} ; \nu=1, \cdots, m . \tag{1}
\end{equation*}
$$

If the numbers $\lambda_{1}, \cdots, \lambda_{m}$ satisfy the condition of Theorem 1 , they are called rationally independent. Theorem 1 states that the straight line $x_{v}=\lambda_{\nu} t ; \nu=1, \cdots, m$, where $\lambda_{1}, \cdots, \lambda_{m}$ are rationally independent, is mod. 2π everywhere dense in the m-dimensional space.

In this paper we shall consider phase-modulated oscillations, i. e. functions

$$
H(t)=e^{i(c t+g(t))}
$$

where c is a real constant and $g(t)$ a real-valued function, almost periodic in the sense of Bohr. Its frequency (in mean) is determined by the constant c, which is called the mean motion of $H(t)$. We shall prove in this paper that Theorem 2 is valid also for phase-modulated oscillations, i. e. we shall prove the following

Theorem 3. Let $H_{1}(t), \cdots, H_{m}(t)$ be phase-modulated oscillations with rationally independent mean motions. To any given real numbers v_{1}, \cdots, v_{m} and any positive ε there exists a number t, satisfying

$$
\left|H_{\nu}(t)-e^{i \nu_{\nu}}\right| \leqq \varepsilon ; \nu=1, \cdots, m .
$$

Apparently we lose nothing by this generalization although Theorem 3 is evidently much more far-reaching than Theorem 2. However, it is well-known that Вонц has proved that the set of numbers t satisfying (1) is relatively dense and Weyc has proved that the set of numbers t satisfying (1) has the relative measure $\left(\frac{2 \arcsin \frac{\varepsilon}{2}}{\pi}\right)^{m}$ on the t-axis. It will be proved that Bohl's result is valid also in the general case, but we lose Weyl's result. This is, in fact, not valid for the single oscillation $H(t)=e^{i(t+\sin t)}$, if we take $v=0$ and $\varepsilon<2$.

Theorem 3 states that the curve $x_{\nu}=c_{\nu} t+g_{\nu}(t) ; \nu=1, \cdots, m$, where c_{1}, \cdots, c_{m} are rationally independent, is $\bmod 2 \pi$ everywhere dense in the m-dimensional space.

The result is brought in closer connection with the theory of almost periodic functions by the following theorem by H. Bohr ${ }^{1}$.

Theorem 4. A complex-valued almost periodic function $f(t)$; $-\infty<t<\infty$, satisfying $|f(t)| \geq k>0$, can be written

$$
f(t)=r(t) \cdot H(t)
$$

where $r(t)$ is a positive almost periodic function and $H(t)$ is a phase-modulated oscillation.

The mean motion of $H(t)$ is also called the mean motion of $f(t)$. If $f(t)$ is almost periodic and a and b are complex con-

[^0]stants such that $f(t)-a$ and $f(t)-b$ satisfy the condition of Theorem 4, the mean motions of these functions have a rational ratio. This was first proved by Jessen ${ }^{1}$ and later Jessen and Fenchel ${ }^{2}$ found a more general theorem concerning almost periodic movements on closed or plane surfaces. In this paper we shall deduce some generalizations of Jessen's original theorem in another direction. For the present we observe that Jessen's theorem is a corollary of Theorem 3. In fact, Jessen's theorem may be expressed as the following

Theorem 5. If two almost periodic functions $f_{1}(t)$ and $f_{2}(t)$, which do not come arbitrarily near to zero, satisfy a linear relation

$$
\begin{equation*}
\alpha_{1} f_{1}(t)+\alpha_{2} f_{2}(t)=\alpha_{3}, \tag{2}
\end{equation*}
$$

where α_{1}, α_{2} and α_{3} are complex constants $\neq 0$, the mean motions c_{1} and c_{2} of $f_{1}(t)$ and $f_{2}(t)$ are rationally dependent.

In fact, if c_{1} and c_{2} were rationally independent, there would according to Theorem 3 exist a number t such that the complex numbers $\alpha_{1} f_{1}(t), \alpha_{2} f_{2}(t)$ and $-\alpha_{3}$ would have nearly equal arguments and that would render the relation (2) impossible.

We shall prove that Theorem 5 is valid for an arbitrary number of almost periodic functions satisfying a similar condition. If, on the other hand, we restrict the number of functions to three, we may replace the linear relation (2) by a homogeneous quadratic equation, and the theorem is still true.

§ 1. Some Preliminary Remarks.

For the convenience of the reader we shall first mention some results concerning periodic and limit periodic functions of a denumerable set of variables, which we shall use in the sequel. We shall permanently use the vector notations $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots\right)$. For two vectors $\boldsymbol{x}=\left(x_{1}, x_{2}, \cdots\right)$ and $\boldsymbol{y}=\left(y_{1}, y_{2}, \cdots\right)$ and two numbers k and l we define the linear combination

$$
k \boldsymbol{x}+l \boldsymbol{y}=\left(k x_{1}+l y_{1}, k x_{2}+l y_{2}, \cdots\right),
$$

[^1]and if one of the vectors \boldsymbol{x} and \boldsymbol{y} has only a finite number of coordinates $\neq 0$, we have the inner product
$$
\boldsymbol{x} \boldsymbol{y}=x_{1} y_{1}+x_{2} y_{2}+\cdots
$$

A sequence $\boldsymbol{x}_{\nu}=\left(x_{r_{1},}, x_{\nu_{2}}, \cdots\right) ; \nu=1,2, \cdots$ of vectors is said to converge towards a vector $\boldsymbol{x}_{0}=\left(x_{01}, x_{02}, \cdots\right)$ if $x_{\nu \mu} \rightarrow x_{0 \mu}$ for $\mu=1,2, \cdots$ and $\nu \rightarrow \infty$. A function $F(x)$ is called continuous for $\boldsymbol{x}=\boldsymbol{x}_{0}$ if $F\left(\boldsymbol{x}_{r}\right) \rightarrow F\left(\boldsymbol{x}_{0}\right)$, when \boldsymbol{x}_{r} runs through a sequence of vectors belonging to the domain where $F(\boldsymbol{x})$ is defined, and converging towards \boldsymbol{x}_{0}. A function is continuous in a domain (i.e. continuous in every point of this domain) if it can be approximated uniformly with any given accuracy by a continuous function depending only on a finite number of variables. In what follows the domain in question is the real infinite-dimensional space. A function $F(\boldsymbol{x})=F\left(x_{1}, x_{2}, \cdots\right)$ is called limit periodic with the limit period 2π, if it can be approximated uniformly in the whole space by a continuous function depending only on a finite number of variables and periodic in each of these with a period that is an integral multiple of 2π. Hence a limit periodic function is continuous. The function $F(x)$ can be approximated uniformly in the whole space with any given accuracy by an exponential polynomial

$$
P(x)=\sum a_{r} \cdot e^{i r \cdot x}
$$

where \boldsymbol{r} runs through a finite set of vectors with rational coordinates, among which only a finite number are $\neq 0^{1}$.

The numbers $\lambda_{1}, \cdots, \lambda_{m}$ are called rationally independent if a relation

$$
r_{1} \lambda_{1}+\cdots+r_{m} \lambda_{m}=0
$$

with rational r_{1}, \cdots, r_{m} is possible only when $r_{1}=\cdots=r_{m}=0$. The numbers $\lambda_{1}, \lambda_{2}, \cdots$ are rationally independent if $\lambda_{1}, \cdots, \lambda_{m}$ are rationally independent for all values of m.

In the sequel we shall give a very brief account of some principal theorems concerning almost periodic functions ${ }^{2}$. We shall start with two preliminary definitions:
${ }^{1}$ A detailed discussion of the properties of limit periodic functions is given by H. Bонr: Zur Theoric der fastperiodischen Funktionen II. Acta math. 46 (1925).
${ }_{2}^{2}$ For detailed proofs, cf. H. Bонr: Fastperiodische Funktionen, Berlin 1932.

A set of real numbers is called relatively dense if there exists a number l such that any interval of length l contains at least one number of the set.

A number r is called a translation number of a function $f(t),-\infty<t<\infty$ corresponding to $\varepsilon>0$, if

$$
|f(t+r)-f(t)| \leq_{\varepsilon}
$$

for $-\infty<t<\infty$.
A function $f(t)$ is called almost periodic if it has the following property
(i) The set of translation numbers of $f(t)$ corresponding to any $\varepsilon>0$ is relatively dense.

It is a main result of the theory of almost periodic functions that any of the following two properties is equivalent to the preceding one:
(ii) To any $\varepsilon>0$ exists an exponential polynomial

$$
\sum a_{\lambda} e^{i \lambda t}
$$

where λ runs through a finite set of real numbers, approximating $f(t)$ everywhere with the accuracy ε.
(iii) There exist a series of linearly independent real numbers $\beta_{1}, \beta_{2}, \cdots$ and a function $F(x)$ with the limit period 2π such that

$$
\Gamma(t)=F(\beta t)=F\left(\beta_{1} t, \beta_{2} t, \cdots\right) .
$$

The function $F(\boldsymbol{x})$ is called a spatial extension (or the spatial extension, although $F(\boldsymbol{x})$ is not uniquely determined) of $f(t)$.

The equivalence of the two latter properties is rather easily proved and it is also rather simple to prove that they imply the property (i), but it is much more difficult to prove that (i) implies (ii) or (iii). This is the main theorem in the theory of almost periodic functions. In the sequel we shall almost exclusively use the property (iii). From the theory of almost periodic functions we also have

Theorem 6. The set of values assumed by the spatial extension of an almost periodic function $f(t)$ is a subset of the closure of the set of values assumed by $f(t)$.

Theorem 7. The set of common translation numbers of a finite number of almost periodic functions corresponding to an arbitrary $\varepsilon>0$ is relatively dense.

Sum and product of a finite number of almost periodic functions are almost periodic, and if $g(t)$ is almost periodic the function $e^{i g(t)}$ is also almost periodic.

It is important that the numbers $\beta_{i}, \beta_{2}, \cdots$ in (iii) can be chosen in a great variety of manners. E. g. any set $\gamma_{1}, \gamma_{2}, \cdots$ of linearly independent numbers such that any β_{γ} can be written as a linear combination with rational coefficient of a finite number of the γ 's. From this follows further

Theorem 8. To a sequence $f_{1}(t), f_{2}(t), \cdots$ of almost periodic functions exist a sequence $\beta_{1}, \beta_{2}, \cdots$ of rationally independent real numbers and a sequence $F_{1}(\boldsymbol{x}), F_{2}(x), \cdots$ of limit periodic functions such that

$$
f_{\nu}(t)=F_{\nu}(\beta t) ; \nu=1,2, \cdots,
$$

and the sequence $\beta_{1}, \beta_{2}, \cdots$ can be chosen such that it contains any given sequence of rationally independent numbers as a subsequence.

From the theory of almost periodic functions follows further
Theorem 9. If a denumerable set $f_{1}(t), f_{2}(t), \cdots$ of almost periodic functions satisfy an equation

$$
\Phi\left(f_{1}(t), f_{2}(t), \cdots\right)=0
$$

where $\Phi\left(u_{1}, u_{2}, \cdots\right)$ is continuous when u_{ν} for $\nu=1,2, \cdots$ belongs to the closure of the set of values assumed by $f_{v}(t)$, the spatial extensions $F_{1}(x), F_{2}(x), \cdots$ satisfy the equation

$$
\Phi\left(F_{1}(\boldsymbol{x}), F_{2}(\boldsymbol{x}), \cdots\right)=0
$$

Theorem 10. If $G(\boldsymbol{x})$ has the limit period 2π, and $\left(r_{1}, r_{2}, \cdots\right)$ is a vector with rational coordinates, of which only a finite number are $\neq 0$, the function

$$
e^{i\left(r_{1} x_{1}+r_{2} x_{2}+\cdots+G(x)\right)}
$$

has the limit period 2π.

If $g(t)$ is almost periodic and c is an arbitrary real number, the function

$$
e^{i(c t+g(t))}
$$

is almost periodic.

§ 2. The Mean Motions of Limit Periodic and Almost Periodic Functions.

A continuous argument of a continuous function $P(\boldsymbol{x})=$ $=P\left(x_{1}, \cdots, x_{m}\right)$ with the period 2π in each variable and not assuming the value 0 can evidently be written

$$
\arg P(\boldsymbol{x})=\boldsymbol{p} \boldsymbol{x}+Q(\boldsymbol{x})=p_{1} x_{1}+\cdots+p_{m} x_{m}+Q(\boldsymbol{x}),
$$

where p_{1}, \cdots, p_{m} are integers and $Q(\boldsymbol{x})$ is continuous and has the period 2π. For a limit periodic function we have

Theorem 11. If $F(x)=F\left(x_{1}, x_{2}, \cdots\right)$ has the limit period 2π and satisfies $|F(\boldsymbol{x})| \geqq k>0$, a continuous argument of $F(\boldsymbol{x})$ can be written

$$
\arg F(\boldsymbol{x})=r_{1} x_{1}+r_{2} x_{2}+\cdots+G(\boldsymbol{x})=\boldsymbol{r} \boldsymbol{x}+G(\boldsymbol{x}),
$$

where r_{1}, r_{2}, \cdots are rational numbers, of which only a finite number are $\neq 0$, and $G(x)$ has the limit period 2π.

The vector \boldsymbol{r} is called the mean motion vector of $F(\boldsymbol{x})$.
For the proof ${ }^{1}$ we consider a sequence $P_{1}(x), P_{2}(x), \cdots$ of continuous functions with the following properties: (i) Each function depends only on a finite number of variables and has a period that is an integral multiple of 2π. (ii) The functions $P_{\nu}(\boldsymbol{x})$ converge uniformly towards $F(\boldsymbol{x})$ and satisfy

$$
\left|F(x)-P_{\nu}(x)\right| \leq \frac{k}{2} ; \nu=1,2, \cdots
$$

We can choose continuous arguments such that

$$
\begin{equation*}
\left|\arg F(x)-\arg P_{\nu}(x)\right|<\frac{\pi}{2} ; \nu=1,2, \cdots \tag{3}
\end{equation*}
$$

and we have for any integer ν

[^2]$$
\arg P_{\nu}(\boldsymbol{x})=r_{1} x_{1}+r_{2} x_{2}+\cdots+Q_{v}(\boldsymbol{x}),
$$
where r_{1}, r_{2}, \cdots are rational numbers, of which only a finite number are $\neq 0$, and $Q_{\nu}(\boldsymbol{x})$ is a continuous function depending on a finite number of variables and having a period that is an integral multiple of 2π. From this and (3) follows
$$
\arg F(\boldsymbol{x})=r_{1} x_{1}+r_{2} x_{2}+\cdots+G(\boldsymbol{x}),
$$
where $G(x)$ is continuous and bounded. But it also follows that the numbers r_{1}, r_{2}, \cdots do not depend on ν. Hence it follows that $Q_{\nu}(\boldsymbol{x})$ converges towards $G(\boldsymbol{x})$, which implies that $G(\boldsymbol{x})$ has the limit period 2π.

Concerning almost periodic functions we have
Theorem 12. Let $f(t)$ denote an almost periodic function and $F(\boldsymbol{x})$ its spatial extension such that

$$
f(t)=F\left(\beta_{1} t, \beta_{2} t, \cdots\right),
$$

where $\beta_{1}, \beta_{2}, \cdots$ are rationally independent real numbers. If $f(t)$ satisfies the condition $|f(t)|>k>0$, continuous arguments of $F(\boldsymbol{x})$ and $f(t)$ can be written

$$
\arg F(x)=r_{1} x_{1}+r_{2} x_{2}+\cdots+G(\boldsymbol{x})
$$

and

$$
\arg f(t)=c t+g(t)
$$

where

$$
c=r_{1} \beta_{1}+r_{2} \beta_{2}+\cdots
$$

and

$$
g(t)=G\left(\beta_{1} t, \beta_{2} t, \cdots\right),
$$

i. e. $g(t)$ is almost periodic.

The constant c is called the mean motion of $f(t)$.
The theorem is an immediate consequence of Theorems 6 and 11. It contains Theorem 4 as a special case.

§ 3. An Auxiliary Theorem on Convergence in an Infinite-Dimensional Space.

A denumerable set $\boldsymbol{a}_{\mu}=\left(a_{\mu 1}, a_{\mu 2}, \cdots\right) ; \mu=1,2, \cdots$ of in-finite-dimensional vectors, each with only a finite number of
its coordinates $\neq 0$, is called a complete set of linearly independent vectors if every vector with only a finite number of its coordinates $\neq 0$ in one and only one way can be written as a linear combination of a finite number of the vectors $\boldsymbol{\pi}_{\mu}$. This will be the case if and only if any finite number of the vectors \boldsymbol{c}_{μ} are linearly independent and each of the unit vecors $\boldsymbol{e}_{1}=(1,0,0, \cdots), \boldsymbol{e}_{2}=(0,1,0, \cdots), \cdots$ can be written as a linear combination of a finite number of the vectors $\boldsymbol{\pi}_{\mu}$.

For the proof of a generalization of Theorem 3 to a denumertable set of phase-modulated oscillations we shall need the following theorem.

Theorem 13. Let $\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots$ be a complete set of linearly independent vectors, each with only a finite number of its coordinates $\neq 0$, and let K_{1}, K_{2}, \cdots be a sequence of positive numbers. Any sequence $\boldsymbol{x}_{\nu}=\left(x_{\nu 1}, x_{\nu 2}, \cdots\right) ; v=1,2, \cdots$ of vectors satisfying

$$
\left\{\begin{array}{c}
\left|\boldsymbol{a}_{\mu} \boldsymbol{x}_{\nu}\right|=\left|a_{\mu 1} x_{\nu 1}+a_{\mu 2} x_{\nu 2}+\cdots\right| \leq K_{\mu} ; \mu=1,2, \cdots, v \tag{4}\\
v=1,2, \cdots
\end{array}\right.
$$

possesses a convergent subsequence.
In fact, for each n we have a representation

$$
\boldsymbol{e}_{n}=\alpha_{n 1} \boldsymbol{a}_{1}+\cdots+\alpha_{n N_{n}} \boldsymbol{a}_{N_{n}}
$$

which implies that

$$
\begin{equation*}
x_{\nu n}=\boldsymbol{e}_{n} \boldsymbol{x}_{v}=\alpha_{n 1} \boldsymbol{\epsilon}_{1} \boldsymbol{x}_{v}+\cdots+\alpha_{n N_{n}} \boldsymbol{a}_{N_{n}} \boldsymbol{x}_{v} \tag{5}
\end{equation*}
$$

and from (4) and (5) follows that

$$
\begin{gathered}
\left|x_{\nu n}\right| \leqq\left|\alpha_{n 1}\right|\left|\boldsymbol{\kappa}_{1} \boldsymbol{x}_{\nu}\right|+\cdots+\left|\alpha_{n N_{n}}\right|\left|\boldsymbol{\kappa}_{N_{n}} \boldsymbol{c}_{\nu}\right| \leqq\left|{\alpha_{n 1}}\right| K_{1}+\cdots+ \\
+\left|{\alpha_{n N_{n}}}\right| K_{N_{n}} ; v=n, n+1, \cdots
\end{gathered}
$$

or

$$
\left|x_{p n}\right| \leq K_{n}^{*} ; n=1,2, \cdots ; v=1,2, \cdots
$$

and it follows by the usual diagonal method that the sequence has a convergent subsequence.

It is easily proved that any sequence of vectors $\boldsymbol{\pi}_{1}, \boldsymbol{\mu}_{2}, \cdots$, each with only a finite number of its coordinates $\ddagger 0$, and of
which any finite number are linearly independent, can be enlarged to a complete set of linearly independent vectors, e.g. by adding to the sequence a conveniently chosen subsequence of the sequence of unit vectors.

§ 4. An Auxiliary Theorem from the Topology.

The greater part of our theory will be founded on the following topological theorem, which is an immediate consequence of the theory of the Kronecker index of a surface ${ }^{1}$.

Theorem 14. Let $\boldsymbol{y}=\boldsymbol{f}(\boldsymbol{x})$ or $y_{1}=f_{1}(\boldsymbol{x}), \cdots, y_{m}=f_{m}(\boldsymbol{x})$ be a continuous vector function in m-dimensional space. If there exists a constant K such that $\left|f_{\nu}(x)\right| \leq K$ for $\nu=1, \cdots, m$ and all vectors \boldsymbol{x}, the vector function $\boldsymbol{y}=\boldsymbol{x}+f(\boldsymbol{x})$ maps the total m-dimensional space on itself.

Generally, of course, the mapping is not a one-to-one-correspondence. For the infinite-dimensional space we shall prove the somewhat more general theorem:

Theorem 15. Let $\boldsymbol{a}_{1}, \boldsymbol{u}_{2}, \cdots$ denote a complete set of linearly independent real vectors, K_{1}, K_{2}, \cdots positive numbers and $Q_{1}(\boldsymbol{x})$, $Q_{2}(\boldsymbol{x}), \cdots$ continuous real functions satisfying $\left|Q_{\nu}(\boldsymbol{x})\right| \leqq K_{\nu}$; $\nu=1,2, \cdots$. To arbitrary real numbers y_{1}, y_{2}, \cdots exists a corresponding vector \boldsymbol{x} satisfying

$$
\begin{equation*}
\boldsymbol{\pi}_{\nu} \boldsymbol{x}+Q_{\nu}(\boldsymbol{x})=y_{\nu} ; \quad \nu=1,2, \cdots \tag{6}
\end{equation*}
$$

At first we shall restrict our considerations to the equations

$$
\boldsymbol{a}_{\nu} \boldsymbol{x}+Q_{\nu}(\boldsymbol{x})=y_{\nu} ; v=1, \cdots, m .
$$

It is easily proved that these equations possess a solution. In fact we can enlarge the system so that we obtain a new system

$$
\boldsymbol{b}_{\nu} \boldsymbol{x}+R_{\nu}(\boldsymbol{x})=!_{\nu} ; \nu=1, \cdots, N,
$$

where $\boldsymbol{b}_{1}, \cdots, \boldsymbol{b}_{N}$ are linearly independent N-dimensional vectors such that for $\nu=1, \cdots, m$ the coordinates of \boldsymbol{b}_{v}, are identical

[^3]with the N first coordinates of $\boldsymbol{\pi}_{\nu}$, including all that are different from zero. If we introduce $z_{\nu}=\boldsymbol{b}_{\nu} \boldsymbol{x} ; \nu=1, \cdots, N$ as new variables, we obtain a new system of equations satisfying the conditions of Theorem 14 and the assertion follows. We choose zero for the coordinates x_{N+1}, x_{N+2}, \cdots.

The solution x_{m} found in this manner satisfies

$$
\left|\boldsymbol{u}_{\nu} \boldsymbol{x}_{m}\right|=\left|y_{\nu}-Q_{\nu}(\boldsymbol{x})\right| \leqq\left|y_{\nu}\right|+K_{\nu}
$$

and from Theorem 13 follows that some subsequence of the sequence of vectors \boldsymbol{x}_{m} converges towards a limit vector \boldsymbol{x}, which evidently satisfies all the equations (6).

§ 5. The Main Theorems.

From Theorems 11 and 15 follows immediately

Theorem 16. Let $F_{\nu}(\boldsymbol{x})=F_{\nu}\left(x_{1}, x_{2}, \cdots\right) ; v=1,2, \cdots$ be a sequence of functions with the limit period 2π and satisfying $\left|F_{\nu}(\boldsymbol{x})\right| \geq k_{\nu}>0$ for all vectors \boldsymbol{x}. If the mean motion vectors corresponding to any finite number of the functions $F_{\nu}(\boldsymbol{x})$ are linearly independent and v_{1}, v_{2}, \cdots are arbitrary real numbers, there exists a vector x such that

$$
\arg F_{\nu}(\boldsymbol{x})=v_{\nu} ; \nu=1,2, \cdots .
$$

In fact, if the set of mean motion vectors is not a complete set of linearly independent real vectors, we can make it complete by enlarging the system of functions $F_{\nu}(\boldsymbol{x})$.

For a finite set of almost periodic functions we have
Theorem 17. If c_{1}, \cdots, c_{n} are rationally independent real numbers and $g_{1}(t), \cdots, g_{n}(t)$ are arbitrary almost periodic functions, there exists to any given real numbers v_{1}, \cdots, v_{n} and any positive ε a number t satisfying

$$
\begin{equation*}
\left|c_{\nu} t+g_{\nu}(t)-v_{\nu}\right| \leqq \varepsilon(\bmod 2 \pi) ; \nu=1, \cdots, n, \tag{7}
\end{equation*}
$$

i. e. the curve $x_{\nu}=c_{\nu} t+g_{\nu}(t) ; \nu=1, \cdots, n$ is mod. 2π everywhere dense in the n-dimensional space.

According to Theorem 8 we choose a sequence $\beta_{1}, \beta_{2}, \cdots$ of rationally independent real numbers, where $\beta_{1}=c_{1}, \cdots, \beta_{n}=c_{n}$, such that

$$
c_{\nu} t+g_{\nu}(t)=\beta_{\nu} t+G_{\nu}(\beta t) ; \nu=1, \cdots, n,
$$

where the functions $G_{\nu}(x) ; \nu=1, \cdots, n$ have the limit period 2π. It follows from Theorem 14 that there exists a vector $\boldsymbol{x}^{*}=\left(x_{1}^{*}, \cdots, x_{n}^{*}, 0, \cdots\right)$, satisfying

$$
x_{\nu}^{*}+G_{\nu}\left(\boldsymbol{c}^{*}\right)=v_{\nu} .
$$

We can further choose continuous periodic functions $Q_{1}(x)$, $\cdots, Q_{n}(\boldsymbol{x})$ each depending only on a finite number of variables, such that

$$
\left|G_{\nu}(\boldsymbol{x})-Q_{\nu}(\boldsymbol{x})\right| \leq \frac{\varepsilon}{3} ; \nu=1, \cdots, n
$$

for all vectors \boldsymbol{x}. From Kronecker's theorem follows the existence of a number t satisfying

$$
\left|Q_{p}\left(x^{*}\right)-Q_{r}(\beta t)\right| \leq \frac{t}{6} ; v=1, \cdots, n
$$

and

$$
\left|x_{r} ;-\beta, t\right| \leqq \frac{\varepsilon}{6}(\bmod .2 \pi) ; \nu=1, \cdots, n .
$$

Hence

$$
\begin{aligned}
& \left|c_{\nu} t+g_{\nu}(t)-v_{\nu}\right|=\left|\beta_{\nu} t+G_{\nu}(\beta t)-v_{\nu}\right| \leq\left|G_{\nu}(\beta t)-Q_{\nu}(\beta t)\right|+ \\
& \quad+\left|\beta_{\nu} t-x_{\nu}\right|+\left|Q_{\nu}(\beta t)-Q_{\nu}\left(x^{*}\right)\right|+\left|Q_{\nu}\left(x^{*}\right)-G_{\nu}\left(\boldsymbol{x}^{*}\right)\right|+ \\
& \quad+\left|x_{\nu}^{*}+G_{\nu}\left(\boldsymbol{x}^{*}\right)-v_{\nu}\right| \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{6}+\frac{\varepsilon}{6}+\frac{\varepsilon}{3}+0=\varepsilon(\bmod 2 \pi),
\end{aligned}
$$

which proves the theorem.
Theorem 3, announced in the introduction, is evidently equivalent with Theorem 17. We observe that the theorem is not valid for a denumerable set of almost periodic functions. E.g. the pure oscillations $e^{i \beta_{1} t}, e^{i \beta_{2} t}, \cdots$, where the numbers $\beta_{1}, \beta_{2}, \cdots$ are rationally independent and converge towards zero, will never simultaneously obtain values near - 1 .

We shall further prove the following generalization of the Kronecker-Bohl theorem.

Theorem 18. The set of numbers satisfying (7) is relatively dense.

In fact, if we choose the real number t_{0} satisfying

$$
\left|c_{\nu} t_{0}+g_{\nu}\left(t_{0}\right)-v_{\nu}\right| \leqq \frac{\varepsilon}{2}(\bmod .2 \pi) ; \nu=1, \cdots, n,
$$

any number $t_{0}+\tau$, where τ is a common translation number of the almost periodic functions

$$
e^{i\left(c_{r}, t+q_{r}(t)-v_{\gamma}\right)}
$$

corresponding to $2 \sin \frac{\varepsilon}{4}$, satisfies (7). Hence the theorem follows from Theorem 7.

§ 6. On Limit Periodic and Almost Periodic Functions Satisfying Linear Relations.

From Theorem 15 follows

Theorem 19. If a sequence of functions $F_{\nu}(\boldsymbol{x})=F_{\nu}\left(x_{1}, x_{2}, \cdots\right)$ with the limit period 2π and with the property $\left|F_{\nu}(x)\right| \geq k_{\nu}>0$; $\nu=1,2, \cdots$ for all x satisfies a linear relation

$$
\begin{equation*}
\alpha_{1} F_{1}(x)+\alpha_{2} F_{2}(x)+\cdots=0 \tag{8}
\end{equation*}
$$

where $\alpha_{1}, \alpha_{2}, \cdots$ are complex constants that are ± 0, and the series on the left converges for all real vectors \boldsymbol{x}, the mean motion vectors $r_{1}, \boldsymbol{r}_{2}, \cdots$ are linearly dependent, i. e. the set of mean motion vectors has a finite subset of vectors that are linearly dependent. This is still true even if the condition $\left|F_{\nu}(\boldsymbol{x})\right| \geq k_{\nu}>0$ is satisfied for only one value of ν, if for every ν we have a representation

$$
F_{\nu}(\boldsymbol{x})=\left|F_{\nu}(\boldsymbol{x})\right| e^{i\left(\boldsymbol{v}_{\nu}, \boldsymbol{x}+G_{\nu}(\boldsymbol{x})\right)}
$$

where $G_{\nu}(x)$ is continuous and bounded and \boldsymbol{r}_{ν} is a vector with rational coordinates, of which only a finite number are $\ddagger 0$.

In fact, if the vectors v_{ν}, were linearly independent, according to Theorem 15 there would exist a vector \boldsymbol{x}^{*} satisfying

$$
\boldsymbol{r}_{\nu} \boldsymbol{x}^{*}+G_{\nu}\left(\boldsymbol{x}^{*}\right)+\arg \alpha_{\nu}=0 ; \nu=1,2, \cdots,
$$

and for $x=x^{*}$ the left side of (8) would be positive and the relation would not be satisfied.

Theorem 20. Let $f_{1}(t), f_{2}(t), \cdots$ be a sequence of almost periodic functions satisfying $\left|f_{\nu}(t)\right| \geqq k_{\nu}>0 ; \nu=1,2, \cdots$ and let K_{ν} denote the upper bound of $\left|f_{\nu}(t)\right| ; \nu=1,2, \cdots$. If $\alpha_{1}, \alpha_{2}, \cdots$ are complex numbers different from zero such that $\sum_{\nu=0}^{\infty}\left|\alpha_{\nu}\right| K_{\nu}$ is convergent and if we have

$$
\begin{equation*}
\alpha_{1} f_{1}(t)+\alpha_{2} f_{2}(t)+\cdots=0 \tag{9}
\end{equation*}
$$

the mean motions c_{1}, c_{2}, \cdots of $f_{1}(t), f_{2}(t), \cdots$ are rationally dependent.

From Theorem 9 follows that the relation (9) implies an analogous relation between the spatial extensions and the theorem therefore follows immediately from Theorems 19 and 12.

We shall prove some stronger theorems concerning finite sets of almost periodic functions satisfying linear relations. For the sake of brevity a function $r(t) e^{i(c t+g(t))}$, where $g(t)$ is a real almost periodic function and $r(t)$ is a real, non-negative function, will be called a modulated oscillation. It will further be called normal if the set of zeros of $r(t)$ contains no intervals.

Theorem 21. If a finite set of modulated oscillations $f_{\nu}(t)=$ $=r_{\nu}(t) e^{i\left(c_{\nu} t+g_{\nu}(t)\right)} ; \nu=1, \cdots, n$ satisfy a linear relation

$$
\begin{equation*}
\alpha_{1} f_{1}(t)+\cdots+\alpha_{n} f_{n}(t)+\beta=0 \tag{10}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{n}$, and β are arbitrary complex numbers $\neq 0$, the mean motions c_{1}, \cdots, c_{n} are rationally dependent.

If the numbers c_{1}, \cdots, c_{n} were rationally independent, it would follow from Theorem 17 that the inequalities

$$
\left|c_{\nu} t+g_{\nu}(t)+\arg \alpha_{\nu}-\arg \beta\right| \leqq \frac{\pi}{2}(\bmod 2 \pi) ; \nu=1, \cdots, n
$$

were satisfied for some value of t in contradiction to the relation (10).

We notice that Theorem 21 is a generalization of theorem 5 , mentioned in the introduction. In the case where $\beta=0$, we have

Theorem 22. If a finite set of modulated oscillations $f_{\nu}(t)=$ $=r_{\nu}(t) e^{i\left(c_{\nu} t+g_{\nu}(t)\right)} ; \nu=1, \cdots, n$, of which at least one is normal, satisfy a relation

$$
\begin{equation*}
\alpha_{1} f_{1}(t)+\cdots+\alpha_{n} f_{n}(t)=0 \tag{11}
\end{equation*}
$$

where $\alpha_{1}, \cdots, \alpha_{n}$ are arbitrary complex numbers that are $\neq 0$, the mean motions c_{1}, \cdots, c_{n} satisfy a linear relation

$$
r_{1} c_{1}+\cdots+r_{n} c_{n}=0
$$

where r_{1}, \cdots, r_{n} are rational numbers satisfying

$$
r_{1}+\cdots+r_{n}=0
$$

and not all zeros.
We choose a real number c that cannot be written $c=r_{1} c_{1}+$ $+\cdots+r_{n} c_{n}$ with rational r_{1}, \cdots, r_{n}. If the real numbers $c+c_{1}, \cdots, c+c_{n}$ were rationally independent, it would follow from Theorem 17 and the continuity of $g_{1}(t), \cdots, g_{n}(t)$ that the inequalities

$$
\left|\left(c+c_{\nu}\right) t+g_{\nu}(t)+\arg \alpha_{\nu}\right| \leqq \frac{\pi}{4} \quad(\bmod .2 \pi) ; \nu=1, \cdots, n
$$

were satisfied for all values of t belonging to some interval $t_{1} \leq t \leq t_{2}$. One of the oscillations, say $f_{u}(t)$, is normal, and hence the interval $t_{1} \leq t \leq t_{2}$ contains a point t^{*}, where $r_{u}\left(t^{*}\right)>0$. From this would follow that the term $\alpha_{\mu} f_{\mu}\left(t^{*}\right) e^{i c t}$ had a positive real part and none of the terms $\alpha_{\nu} f_{\nu}\left(t^{*}\right) e^{i c t}$ had negative real parts, and the relation (11) could not be satisfied for $t=t^{*}$. We have thus proved the existence of a relation

$$
\begin{equation*}
r_{1}\left(c+c_{1}\right)+\cdots+r_{n}\left(c+c_{n}\right)=0 \tag{12}
\end{equation*}
$$

where r_{1}, \cdots, r_{n} are rational and not all zero. As c cannot be written as a linear combination of c_{1}, \cdots, c_{n} with rational coefficients the relation (12) implies the following two relations

$$
\begin{array}{r}
r_{1}+\cdots+r_{n}=0 \\
r_{1} c_{1}+\cdots+r_{n} c_{n}=0
\end{array}
$$

which proves the theorem.

As a very special case of Theorem 21 we have the following theorem, which is a slight generalization of Jessen's original theorem mentioned in the introduction.

Theorem 23. Let $f(t)$ be an almost periodic function. We consider all complex numbers a, for which we have a representation

$$
f(t)-a=|f(t)-a| e^{i(c t+g(t))}
$$

where $g(t)$ is an almost periodic function. The values c corresponding to all possible values of a are rational multiples of one real number.

§ 7. On Almost Periodic Functions Satisfying Quadratic Relations.

Theorem 24. Let $f_{1}(t), f_{2}(t)$, and $f_{3}(t)$ be three almost periodic functions satisfying $\left|f_{\nu}(t)\right| \geqq k>0 ; \nu=1,2,3$, and let c_{1}, c_{2}, and c_{3} denote their mean motions. If we have a relation

$$
\begin{aligned}
a_{1} f_{1}(t)^{2}+a_{2} f_{2}(t)^{2} & +a_{3} f_{3}(t)^{2}+b_{1} f_{2}(t) f_{3}(t)+b_{2} f_{3}(t) f_{1}(t)+ \\
& +b_{3} f_{1}(t) f_{2}(t)+k=0
\end{aligned}
$$

where at least one of the complex numbers $a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3}$, and k is $\ddagger 0$, we have a relation

$$
r_{1} c_{1}+r_{2} c_{2}+r_{3} c_{3}=0
$$

where r_{1}, r_{2}, and r_{3} are rational numbers of which at least one is $\ddagger 0$.

From Theorem 9 follows that the spatial extensions $F_{1}(\boldsymbol{x})$, $F_{2}(x)$, and $F_{3}(x)$ satisfy the equation

$$
\begin{equation*}
a_{1} z_{1}^{2}+a_{2} z_{2}^{2}+a_{3} z_{3}^{2}+b_{1} z_{2} z_{3}+b_{2} z_{3} z_{1}+b_{3} z_{1} z_{2}+k=0 \tag{13}
\end{equation*}
$$

and if c_{1}, c_{2}, c_{3} were rationally independent it would follow from Theorems 12 and 16 that the equation (13) would possess solutions z_{1}, z_{2}, z_{3} with any given set of arguments $\varphi_{1}, \varphi_{2}, \varphi_{3}$. Hence it is sufficient to prove the existence of a set of numbers $\varphi_{1}, \varphi_{2}, \varphi_{3}$ such that the equation

$$
\begin{aligned}
a_{1} r_{1}^{2} e^{2 i \varphi_{1}}+a_{2} r_{2}^{2} e^{2 i \varphi_{2}} & +a_{3} r_{3}^{2} e^{2 i \varphi_{3}}+b_{1} r_{2} r_{3} e^{i\left(\mathscr{\varphi}_{2}+\varphi_{3}\right)}+b_{2} r_{3} r_{1} e^{i\left(\varphi_{3}+\varphi_{1}\right)}+ \\
& +b_{3} r_{1} r_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)}+k=0
\end{aligned}
$$

is not satisfied for any positive values of r_{1}, r_{2}, r_{3}. Without restricting the generality we may suppose that $k \geqq 0$ (if not, we multiply the equation by a convenient factor $e^{i \varphi}$).

Let us first suppose that at most one of the numbers b_{1}, b_{2}, b_{3} is zero. In this case it is sufficient to determine $\varphi_{1}, \varphi_{2}, \varphi_{3}$ such that

$$
\begin{aligned}
& \left|2 \varphi_{\nu}+\operatorname{Arg} a_{\nu}\right| \leq \frac{\pi}{2} \quad(\bmod 2 \pi) ; v=1,2,3 \\
& \left|\varphi_{2}+\varphi_{3}+\operatorname{Arg} b_{1}\right| \leq \frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|\varphi_{3}+\varphi_{1}+\operatorname{Arg} b_{2}\right| \leq \frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|\varphi_{1}+\varphi_{2}+\operatorname{Arg} b_{3}\right| \leqq \frac{\pi}{2} \quad(\bmod 2 \pi),
\end{aligned}
$$

where the sign $<$ holds in at least two of the three last inequalities (If a coefficient is zero, its argument is in this connection defined as zero). If we put

$$
\begin{equation*}
\psi_{\nu}=\varphi_{\nu}+\frac{1}{2} \operatorname{Arg} a_{\nu} ; \nu=1,2,3 \tag{14}
\end{equation*}
$$

we obtain a new set of equations

$$
\begin{equation*}
\left|\psi_{\nu}\right| \leqq \frac{\pi}{4} \quad(\bmod . \pi) ; \nu=1,2,3 \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& \left|\psi_{2}+\psi_{3}-\alpha_{1}\right| \leqq \frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|\psi_{3}+\psi_{1}-\alpha_{2}\right| \leqq \frac{\pi}{2} \quad(\bmod 2 \pi) \tag{16}\\
& \left|\psi_{1}+\psi_{2}-\alpha_{3}\right| \leqq \frac{\pi}{2} \quad(\bmod .2 \pi)
\end{align*}
$$

and to prove our theorem we shall find solutions to this system such that the sign $<$ holds in two of the last three inequalities.

If at least two of the numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, say α_{1} and α_{2}, are neither 0 nor $\pi(\bmod 2 \pi)$, we have

$$
\begin{aligned}
& \left|\varepsilon_{1} \frac{\pi}{2}-\alpha_{1}\right|<\frac{\pi}{2} \\
& \mid(\bmod 2 \pi) \\
& \left|\varepsilon_{2} \frac{\pi}{2}-\alpha_{3}\right|<\frac{\pi}{2} \\
& (\bmod 2 \pi) \\
& \left|\varepsilon_{3} \frac{\pi}{2}-\alpha_{3}\right| \leq \frac{\pi}{2} \\
& (\bmod 2 \pi)
\end{aligned}
$$

when $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ are chosen conveniently as 1 or -1 . If we choose $\psi_{1}, \psi_{2}, \psi_{3}$ such that

$$
\begin{align*}
\psi_{2}+\psi_{3} & =\varepsilon_{1} \frac{\pi}{2} \\
\psi_{3}+\psi_{1} & =\varepsilon_{2} \frac{\pi}{2} \tag{17}\\
\psi_{1}+\psi_{2} & =\varepsilon_{3} \frac{\pi}{2}
\end{align*}
$$

the inequalities (16) are satisfied and the sign $<$ holds in at least two of them. But from the equations (17) results

$$
\psi_{1}+\psi_{2}+\psi_{3}= \pm \frac{\pi}{4} \text { or } \pm \frac{3 \pi}{4}
$$

and it follows that ψ_{1}, ψ_{2}, and ψ_{3} have also values $\pm \frac{\pi}{4}$ or $\pm \frac{3 \pi}{4}$, which proves that the inequalities (15) are satisfied.

If at least two of the numbers $\alpha_{1}, \alpha_{2}, \alpha_{3}$, say α_{1} and α_{2}, are 0 or $\pi(\bmod .2 \pi)$, we choose $\varepsilon_{3}= \pm 1$ such that $\left|\varepsilon_{3} \frac{\pi}{2}-\alpha_{3}\right| \leqq$ $\leq \frac{\pi}{2}(\bmod .2 \pi)$, and it is sufficient to choose $\psi_{1}, \psi_{2}, \psi_{3}$ as solutions of the equations

$$
\begin{aligned}
\psi_{2}+\psi_{3} & =\alpha_{1} \\
\psi_{3}+\psi_{1} & =\alpha_{2} \\
\psi_{1}+\psi_{2} & =\varepsilon_{3} \frac{\pi}{2}
\end{aligned}
$$

Finally we consider the case, where at least two of the numbers b_{1}, b_{2}, and b_{3}, say b_{1} and b_{2}, are zero. It is then sufficient to determine ψ_{1}, ψ_{2}, and ψ_{3} such that

$$
\begin{aligned}
& \left|2 \varphi_{1}+\operatorname{Arg} a_{1}\right|<\frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|2 \varphi_{2}+\operatorname{Arg} a_{2}\right|<\frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|2 \varphi_{3}+\operatorname{Arg} a_{3}\right|<\frac{\pi}{2} \quad(\bmod 2 \pi) \\
& \left|\varphi_{1}+\varphi_{2} \operatorname{Arg} b_{3}\right|<\frac{\pi}{2} \quad(\bmod 2 \pi) .
\end{aligned}
$$

As φ_{3} occurs in only one inequality, it is sufficient to consider φ_{1} and φ_{2}. If we use (14) once more, we obtain the inequalities

$$
\begin{aligned}
&\left|\psi_{2}\right|<\frac{\pi}{4}(\bmod . \pi) \\
&\left|\psi_{2}\right|<\frac{\pi}{4} \quad(\bmod . \pi) \\
&\left|\psi_{1}+\psi_{2}+\alpha\right|<\frac{\pi}{2} \quad(\bmod .2 \pi)
\end{aligned}
$$

which have solutions. In fact, any angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ can be written as $\psi_{1}+\psi_{2}$, where $\left|\psi_{1}\right|<\frac{\pi}{4}$ and $\left|\psi_{2}\right|<\frac{\pi}{4}$, and any angle between $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ can be written $\psi_{1}+\psi_{2}$ with $\left|\psi_{1}\right|<\frac{\pi}{4}$, and $\frac{3 \pi}{4}<\psi_{2}<\frac{5 \pi}{4}$. This proves the theorem.

Theorem 25. If the constant k vanishes, the numbers r_{1}, r_{2}, and r_{3} can be chosen such that

$$
r_{1}+r_{2}+r_{3}=0 .
$$

We choose a real number c that cannot be written $r_{1} c_{1}+$ $+r_{2} c_{2}+r_{3} c_{3}$, and Theorem 25 follows, when Theorem 24 is applied to the functions $f_{1}(t) e^{i c t}, f_{2}(t) e^{i c t}, f_{3}(t) e^{i c t}$.

[^0]: H. Вонв: Kleinere Beiträge zur Theorie der fastperiodischen Funktionen, I. Det Kgl. Danske Videnskabernes Selskab. Math.-fys. Meddelelser, X, 10 (1930). Über fastperiodische ebene Bewegungen. Comment. math. helv. 4 (1932).

[^1]: ${ }^{1}$ B. Jessen: Über die Säkularkonstanten einer fastperiodischen Funktion. Math. Ann. 111 (1935).
 ${ }^{2}$ W. Fenchel und B. Jessen: Über fastperiodische Bewegungen in ebenen Bereichen und auf Flächen. Kgl. Danske Videnskabernes Selskab. Math.-fys. Meddelelser XIII, 6 (1935).

[^2]: ${ }^{1}$ The following proof is very similar to a proof of Theorem 4 given by B. Jessen loc. cit.

[^3]: ${ }^{1}$ Cf. e. g. J. Tannery: Introduction à la théorie des fonctions d'une variable, 2. éd., vol. 2, Paris 1910. Note de M. J. Hadamard.

